
2,3-POLYMETHYLENEQUINOLINES

XIV.* 9-ALKYLAMINO- β -QUININDANES

M. E. Konshin and D. I. Uvarov

9-Alkylamino- β -quinindanes were obtained by cyclization of alkylamides of N-cyclopentylideneanthranilic acids. Their properties and biological activity were studied, the pK_a values of the 9-butylamino- β -quinindanes were determined, and a correlation of the pK_a values with the σ_{epi} substituent constants for quinoline was found.

Little study has been devoted to 9-alkylamino- β -quinindanes. In the present study we accomplished the synthesis of 9-alkylamino- β -quinindanes by intramolecular cyclization of alkylamides of N-cyclo-pentylideneanthranilic acids (II-X) (method A).

The alkylamides of N-cyclopentylideneanthranilic acids (II-X, Table 1) were obtained by refluxing the alkylamides of anthranilic acids (I) [2] with cyclopentanone in benzene. Cyclopentanone condenses better with the methylamides, ethylamides, and n-butylamides of anthranilic acids and less well with the isobutylamides of anthranilic acids. We were unable to accomplish the reaction between the isopropylamide of anthranilic acid and cyclopentanone; this may be explained by steric hindrance.

*See [1] for communication XIII.

TABLE 1. Alkylamides of N-Cyclopentylideneanthranilic Acids

Com- pound	R	Alk	mp , °C		N,	%			₽°-
				Empirical formula	found	calc.	λ _{max} , nm	lg e	Yield,
II IV VV VI VII VIII IX X	H H H CH₃ Cl Cl Br Br	CH ₃ C ₂ H ₅ <i>n</i> -C ₄ H ₉ <i>i</i> -C ₄ H ₉ <i>n</i> -C ₄ H ₉ <i>i</i> -C ₄ H ₉ <i>n</i> -C ₄ H ₉ <i>i</i> -C ₄ H ₉	$\begin{array}{r} 182\\ 184-186\\ 167\\ 166-169\\ 164-166\\ 171-174\\ 199-200\\ 169-170\\ 201-202\\ \end{array}$	$\begin{array}{c} C_{13}H_{16}N_{2}O\\ C_{14}H_{18}N_{2}O\\ C_{16}H_{22}N_{2}O\\ C_{16}H_{22}N_{2}O\\ C_{17}H_{24}N_{2}O\\ C_{16}H_{21}CIN_{2}O\\ C_{16}H_{21}CIN_{2}O\\ C_{16}H_{21}BrN_{2}O\\ C_{16}H_{21}BrN_{2}O\end{array}$	12,8 12,2 10,8 10,8 10,1 9,4 9,5 8,4 8,2	13,0 12,2 10,9 10,9 10,3 9,6 9,6 8,3 8,3	225,340 225,340 225,340 225,340 225,346 226,351 226,351 226,351 225,353	$\begin{array}{c} 4,67; \ 3,68\\ 4,69; \ 3,44\\ 4,56; \ 3,62\\ 4,50; \ 3,20\\ 5,16; \ 3,23\\ 4,59; \ 3,62\\ 4,64; \ 3,73\\ 4,63; \ 3,66\\ 4,78; \ 3,85 \end{array}$	60 62 45 27 38 37 28 60 42

Perm Pharmaceutical Institute. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 531-534, April, 1973. Original article submitted March 6, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Yield, %	AB	42	55 54 38		47 62			41		4,28	25 38	
ು ತಾ		4,30;	4,44; $4,46$; $4,124,29$; $4,26$; $3,94$		4,13; 4,24; 4,06; 4,07	4,69; 4,45;	4,53; 4,32	4,57;	4,19;	4.66;	4,28; 4,02;	4.11:
	λmax, 1111	248.	222, 248, 328	1,0,	248. 332.	947	947 338	959	954 334	953 319	340, 352	956 336
N, %	ound calc.		13,3 13,2 11,5 11,5									
	formula fo		C14H16N2 C16H20N2						C ₁₆ H ₁₉ CIN ₂ 1		C ₁₆ H ₁₉ BrN ₂	CleHigBrN2
()) on of the	ornyaro- chloride, °C	279	268 240	236	260	270	252	237	230	250	254	1
nn of the	base, C+	193	164 - 165 114^3	102-104	132-133	1668	124-125	121-123	112	154-156	138	109-110
	Alk	CH3	C2H5 n-C4H9	i-C4H,	n-C4H9	n-C4H9	$n-C_4H_9$	$n-C_4H_9$	i-C4H	n-C4H9	$n-C_4H_9$	i-CtH
	×	H:	ΕĦ	Η	2-CH ₃	5-CH3	5-CI	7-CI	7-CI	7-CH ₃ O	7-Br	7-Br
Com-	punod	XI	XIIX	VIX	λX,	IVX	IIVX	IIIAX	XIX	XX	IXX	XXII

ether -benzene.

9-Alkylamino- β -quinindanes (XI-XXII)

TABLE 2.

The alkylamides of cyclopentylideneanthranilic acids (II-X) were obtained as colorless crystalline substances that are soluble in organic solvents. Two maxima at 225-226 and 340-353 nm are observed in the UV spectra of these compounds. The IR spectra contain $\nu_{\rm NH}$ bands at 3392-3396 and 3277-3293 cm⁻¹, $\nu_{=\rm CH}$ bands at 3032-3046 cm⁻¹, and $\nu_{\rm CH_2}$ bands at 2923-2946 and 2857-2866 cm⁻¹.

Intramolecular cyclization accompanied by the formation of 9-alkylamino- β -quinindanes (XI-XXII) (Table 2) occurs when II-X are heated with excess phosphorus oxychloride.

In connection with the low accessibility of the alkylamides of some substituted anthranilic acids, 9-alkylamino- β quinindanes were also obtained by condensation of substituted 9-chloro- β -quinindanes (XXIII) with amines (method B). Compound XXIII reacts with butylamine in phenol solution on heating to 160-165° for 20 h to give XI-XXII.

Compounds XI-XXII were obtained as colorless crystalline substances that display basic character and form watersoluble hydrochlorides. The IR spectra of XI-XXII contain $\nu_{\rm NH}$ bands at 3413-3423 cm⁻¹, $\nu_{\rm = CH}$ bands at 3040-3043 cm⁻¹ and $\nu_{\rm CH_2}$ bands at 2940-2946, 2909-2916, and 2860-2863 cm⁻¹. The UV spectra of ethanol solutions of 9-alkylamino- β -quinindanes contain two short-wave absorption bands with maxima at 222-238 and 247-256 nm and a long-wave band with a maximum at 328-338 nm for XI-XIII, XVII, XIX, and XXII and two maxima at 332-341 and 346-356 nm for XV, XVI, XVIII, XX, and XXI.

The pK_a of the 9-butylamino- β -quinindanes (Table 3, Fig. 1) were determined by a spectrophotometric method. It is apparent from the data in Table 3 and Fig. 1 that the pK_a^M and pK_a^T values differ only little from one another, depend to a considerable extent on the character of the substituents in the quinoline ring, and correlate well with the σ_{epi} substituent constants for quinoline [4].

The biological activity of XIII, XV, XX, and XVI, and XXI^{*} was investigated. The experiments were performed on white mice; the systemic toxicity (LD_{50}) and the character of the interrelationships with the muscle relaxants diplatsin and ditilin were studied. All of the compounds are toxic: LD_{50} ranges from 16.6 to 45.5 mg/kg. Compounds XIII, XIV, and XXI have weak anticurare activity, while XV, XX, and XXI sharply intensify the muscle-weakening effect of ditilin.

EXPERIMENTAL

The UV spectra were recorded with an SF-4a spectrophotometer. The IR spectra at $2600-3500 \text{ cm}^{-1}$ (carbon tetrachloride solutions) and at $600-1700 \text{ cm}^{-1}$ (mineral oil pastes) were recorded with an IKS-14 spectrophotometer.

The ionization constants of the 9-butylamino- β -quinindanes were determined by a spectrophotometric method (with an SF-4a spectrophotometer) with 6 \cdot 10⁻⁶-4 \cdot 10⁻⁵ M aqueous

^{*} The tests were carried out by Professor A.S. Zaks and L. G. Zil'bermints (Master of Medical Sciences), to whom the author extends his thanks.

-quimmane					
Compound	$pK_a M$	р <i>К</i> а ^т	r, p, s		
XIII XV XX XVIII XXI XVI XVI XVII	$\begin{array}{c} 9,15\pm0,03\\ 9,36\pm0,02\\ 9,33\pm0,05\\ 8,37\pm0,05\\ 8,39\pm0,04\\ 9,37\pm0,03\\ 7,95\pm0,04\end{array}$	9,11 9,32 9,29 8,31 8,33 9,33 7,92	r 0,999 ρ 4,949 s 0,005		

TABLE 3. Ionization Constants^{*} of 9-Butylamino- β -quinindanes

 ${}^{*}K_{a}M$ is the mixed ionization constant, and $K_{a}T$ is the thermodynamic ionization constant.

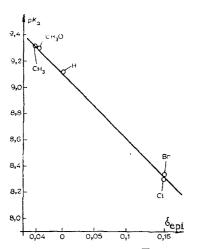


Fig. 1. Dependence of the pK_aT values of 9-butylamino- β -quinindanes on the σ_{epi} constants of substituents for quinoline. solutions at 25 ± 1°. A weighed sample of the investigated compound was dissolved in 0.002 M hydrochloric acid; the necessary pH of the solutions was created by means of 0.01 M buffer mixtures. The pH values were determined with a pH-340 device. The pK_aM and pK_a^T values were calculated by the method in [5]. The reaction constants (ρ), the correlation coefficient (r), and the standard deviation (s) were calculated by the method of least squares [6].

Alkylamides of N-Cyclopentylideneanthranilic acids (II-X). A mixture of 0.01 mole of the alkylamide of anthranilic acid and 0.01 mole of cyclopentanone in 5 ml of benzene was refluxed for 5-6 h, after which it was cooled and the precipitate was removed by filtration and crystallized from alcohol (Table 1).

<u>9-Alkylamino- β -quinindanes (XI-XXII)</u>. A. A 3-ml sample of phosphorus oxychloride was added to 0.01 mole of II-X, and the mixture was heated on a water bath for 1 h. It was then poured into cold water, and the aqueous mixture, after decomposition of the phosphorus oxychloride, was heated to dissolve the salts of XI-XXII. The solution was filtered off from the small amount of insoluble material, and the filtrate was made alkaline with sodium hydroxide solution. The precipitated bases (XI-XXII) were removed by filtration and crystallized (Table 2).

B. A 0.03-mole sample of substituted 9-

 $chloro-\beta$ -quinindane (XXIII) [7] was dissolved in 10 g of fused phenol, 0.06 mole of the appropriate amine was added, and the mixture was heated on a metal bath at 160-165° for 20 h. It was then cooled, and 40-50 ml of benzene was added. The resulting solution was washed three times with 25-ml portions of 10% alkali solution. The benzene and volatile impurities were removed by steam distillation, and the residue was dissolved by heating in 10% hydrochloric acid. The resulting solution was filtered, the filtrate was made alkaline, and the precipitated base was purified by the usual method (Table 2). The hydrochlorides of XI-XXII were obtained by passing dry hydrogen chloride into an ether solution of the bases.

LITERATURE CITED

- 1. D. I. Uvarov, A. S. Zaks, L. G. Zil'bermints, M. E. Konshin, and T. A. Kapitonenko, Khim.-Farmats. Zh., No. 2 (1973).
- 2. M. E. Konshin and P. A. Petyunin, Khim.-Farmats. Zh., No. 11, 10 (1971).
- 3. G. K. Patnaik and M. M. Vohra, J. Med. Chem., 9, 483 (1966).
- 4. Handbook of Chemistry [in Russian], Vol. 3, Moscow-Leningrad (1964), p. 964.
- 5. A. Albert and E. Serjeant, Ionization Constants of Acids and Bases, Methuen (1962).
- 6. L. M. Batuner and M. E. Pozin, Mathematical Methods in Chemical Technique [in Russian], GKhI (1960), p. 488.
- 7. V. Petrow, J. Chem. Soc., 634 (1947).